
Elliptic eigenstates for the quantum harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 7287

(http://iopscience.iop.org/0305-4470/28/24/024)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 01:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 28 (1995) 7287-7297. Printed in the UK 

Elliptic eigenstates for the quantum harmonic oscillator 
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Abstract. A new family of stationary coherent states for the thdimensional harmonic 
oscillator is presented. These states are coherent in the sense that they minimize an uncertainty 
relation for observables related to the orientation and the eccentricity of an ellipse. The 
wavefunction of these states is pmicularly simple and well localized on the corresponding 
classical elliptical trajjecton. As the number of quanta increases, the localization on the classical 
invariant s m c t u e  is more pronounced. These coherent states give a useful tool to compare 
classical and quantum mechanics and, form a convenient basis to study we+ permrbations. 

1. Introduction 

It is well known that the notion of a coherent state for a quantum system was first proposed 
by Schrodinger in 1926 (see [l]), immediately after the birth of the quantum theory. The 
first modem application and development were made by Giauber in 1963 (see references 
in [Z]), who introduced the term coherent state (a), and initiated this important field of 
study now used in many areas of physics. 

In quantum mechanics, the cs makes a natural connection with the dynamical group of 
the system and provides a phase space on which a classical mechanics can be defined. These 
properties have been extensively used for the phasespace representation of quantum states 
by the generalized Husimi distributions and for the study of the semiclassical approximation, 
especially in the case where the classical mechanics is mixed, regular and chaotic 13, 41. 
Indeed the stationary eigenstates of a quantum system are expected to reflect the classical 
invariant structures. 

In-this paper, we illustrate this latter fact for the simple and well known case of 
a two-dimensional isotropic harmonic oscillator where the classical Hamiltonian can be 
simply expressed in terms of the generators of its dynamical group, SU(2).  The geometric 
discussion of the classical meaning of these quantities leads, in the quantum counterpart, 
to the construction of the cs of SU(2),  which are~stationary and localized on the classical 
trajectories in the two-dimensional configuration space. This behaviour is of course different 
from the standard cs which are time-dependent and ‘follow’ the classical particle’s motion. 

For example, in the Coulombic case, the description of an electron in a Rydberg 
atom is based on the construction of a wavepacket representing the particle aspect [5,6] 
(time-dependent cs). Such a state cannot be construct directly and one must consmct the 
wavepacket by a superposition of time-independent eigenstates of various energies which 
represent the classical elliptic trajectories. Nevertheless, this construction does not lead to 
a well localized wavepacket [7,8]. 
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Here we adopt a heuristic presentation: if the notion of trajectory is not a valid concept 
in quantum mechanics, due to the Heisenberg uncertainty relationships, we think that it 
would be illuminating to see that the stationary states are, in fact, related to some classical 
invariant, and that the cs offer a basic tool for expressing this analogy [9]. 

This paper is organized as follows. Section 2 gives the more compact form of these 
coherent states using complex coordinates. These coordinates are connected to the Cartesian 
(real) ones by a parameter associated to the eccentricity of the ellipse. We also give some 
visualizations of the probability density which clearly exhibit an elliptical shape and Bohr's 
quantization principle. Then, we recall the symmetry group of the classical two-dimensional 
harmonic oscillator in section 3. In section, 4, we conshuct from the classical properties 
the cs of SU(2). In section 5, we identify the quantum states built in section 2 with the 
cs of SU(2).  Section 6 is devoted to the relation between these elliptical cs and the usual 
two-dimensional CS. A discussion on the interest of these elliptical cs for weak perturbation 
is presented in the conclusion. 

2. Complex representation of elliptic states 

We consider a particle in a two-dimensional isotropic harmonic oscillator. Let q be 
a parameter such that 0 < q < n/4 and consider the following complex canonical 
transformation: 

1 X=- ( x  cos q + iy sin q )  J Z G  
I 

y=- (-ix sin q + y cos q )  &-& 
where x and y are the usual dimensionless Cartesian coordinates. The Hamiltonian in both 
bases has the same quadratic form: 

H = $(X' + )'2 + px2  + p?) = f (XZ + YZ + Px2 + PyZ) . (2) 
Therefore any wavefunction Q a x ( X ) @ n y ( Y )  is a solution of the stationary Schradinger 
equation where @.(z) = (n!/&2")"' exp(-z2/2)Hn(z) denotes the usual eigenfunctions 
of the one-dimensional oscillator associated with the eigenvalues n -I- $ [IO] (H, is a Hermite 
polynomial of order n). Of particular interest are functions defined as 

%y,,(& y)  = (cos2~Y'2q?"~x)@o(Y)~ (3) 
They represent normalized stationary states of (2)  with the energy n + 1. Because Hermite 
polynomials of order n have n real zeros, Y,,,,(x, y) has only n nodes located on the Ox 
axis. Consequently these functions have less zeros than the usual ones, which are the 
tensorial product of n, quanta in the Ox-direction and n y  quanta in the Oy-direction, i.e. 
n, + ny = n lines of zeros on the plane. The probability density lYn,,I2 is peaked on the 
classical orbit: 

x2 yz  
- + + = 1  
a2 

where a and b are defined by n + 1 = aZ/2 + b2/2 and we introduce the eccentricity 
e = = w. The three sub-figures (a)-@) of figure 1 show the 
probability densities IYlog[2 for three elliptic states with n = 10 and = 45". 30" 
and 20", illustrating geometrically Bohr's correspondence principle and the classical areal 
velocity law: the classical particle spends more time near the two apogees of the motion, 
and therefore the quantum density has a peak at these points (see the discussion in 191). 
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Figure 1. The probability densities IYto,,12 associated with stationary coherent rllipuc states 
with n = 10 quanta and: (0)  0 = 45' the circular State with maximum orbital momentum, (b) 
q = 30'. eccentricity e = 0.81 and (e )  q = 20'. eccenuicity e = 0.93. It is wonhwhile to 
note the ten nodes on the major axis are degenerated at the origin for the circulx state. ( d )  A 
smdard eigenstate with six quanta in Ox and 4 in Oy. 
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2 Figure 2. The 3~ elliptic states (e = 0.93) with zero quanta on 0:. The iso-surface of /qn,,l 
defines a volume corresponding to a probability 4 of finding the panicle within. These figures 
illusuate the Bohr correspondence principle. (a) n = 2, 9) n = 10, (c) n = 50. 
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Figure l(a) is a representation of the eigenstate which corresponds to the maximal z- 
component of the angular momentum. It is of course circular. Figure I(d) shows the 
probability density for a standard state of the s e e  number of quanta (six quanta in Ox add 
four in Oy, i.e. ten lines of zeros). Figure 2 presents a perspective view of three iso-density 
surfaces for the three-dimensional harmonic oscillator with 0 quanta in the Oz-direction 
and 2, 10 and 50 quanta in the (Ox, Oy) plane. These surfaces are calculated so that the 
particle has a 50% probability to be inside the volume enclosed by the surface. We remark 
that a large quantum number is not necessary for the localization of the particle density on 
the classical trajectory (Bohr’s principle). 

Following the standard procedure, we introduce from the canonical transformation (I) ,  
the creation and annihilation operators: 

They satisfy the usual commutation relations. The state associated with wavefunction (3) 
can be written as 

where 10) is the ground state of the oscillator. The factor cos 2q comes from the fact that 
A: is not the adjoint of A,. 

3. The group SU(2) of the classical harmonic oscillator 

Before introducing the CS, let us~recall some results about the classical 2D-isDtropic harmonic 
oscillator. In order to provide the ad hoc construction and define notations, let us consider 
the Hamiltonian (2) in the Cartesian coordinates. The group structure of this system is 
SU(2) [ll], which is defined by the permutations between the generators 

[Si, S j }  = EijXSX (5) 
where ci jk  is the antisymmetrical tensor, {. , .) denotes the Poisson bracket and Si are three 
constants of motion: 

- y2 - p ; )  s, = ; (pxpr  + xyj sj = $(xp, - y p d .  (6) 
Due to the number of degrees of freedom, H and S; are not independent, and direct 
calculation gives 

2 2  SI = g x  + p ,  

HZ = 4s’ (7) 
where Sz = SI’ + S2’ + Sj2. Thus, the set Si characterizes the geometrical configuration 
of the trajectory. Let us describe the meaning of these quantities. For a given trajectory 
they correspond to a unique point on a sphere, called rhe Bloch sphere (figure 3 )  of radius 
S = H / 2  = E / 2  ( E  is the energy). We define the spherical coordinates relative to Sj: 

SI =SsinBcosp Sz=SSinBsinp S3=ScosB. 

Letus now consider the ellipse .?/a2 + Y2/b2 = 1, a > b, with 

cos: sin: (:) = (-sin; cos:) ( C) 
The angle represents the orientation of the major axis of the ellipse. We defined q 
such that a = @cos q and b = - m s i n  q,  wh&e q is related to the eccentricity by 
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Figure 3. The Bloch sphere: an alternative representation of the phase space for the two- 
dimensional isompic oscillator. The coordinates 0 and p give the characteristics (orientation, 
eccentricity, major axis) of a classid ellipse associated wilh the corresponding coherent 
state. The surface has been consrmcted by deforming the Bloch sphere ndially by B quantity 
proponional to the squxed scalar product of a panicular coherent elliptic state In = 200: eoq po) 
with the cs corresponding to the direcrion (8, p). 

e = -. Direct calculations-give B = - Zq. The interpretation of Si and S, 
becomes more evident if we note that SI = cos (0 and S2 = sin ‘p so that the 
focal distance f = 4(SI2 + S22)”4. The generator S3 is clearly half of the z-component of 
the classical momentum L,, the rotation generator in the plane. 

The set Si can also be considered as a set of generating functions of canonical 
transformations [11]  which correspond to rotations on the Bloch sphere. Therefore any 
ellipse can be deduced from another one by a rotation on the sphere. 

For example, using the previous expressions of SI and &, a rotation of q about S, 
will keep a ,  b, f and E constant and change only the orientation of the ellipse. On the 
other hand, rotations about SI or S, will, in general, modify both the eccentricity and the 
orientation, except when ‘p = 0, where rotations .about S2 will change only the eccentricity 
alone, as is also the case about SI for q = 5. 

If we now consider the motion of a particle on the classical trajectory, we need only one 
more quantity to describe its position, namely the time expressed in a suitable dimension. 
This gives a geometrical parametrization of the phase space for this system by the set Si 
and t. 

2-62 . 
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The quantum counterpart of this system is expressed by the same relations (Z), (5)-(7) 
using commutators instead of Poisson brackets and i6ijk instead of 6 i jk .  We set.A = 1 and 
denote Qe classical generators and the quantum operators by the same letters. Due to the 
commutators the relation (7) becomes 

H Z  = 4S2+ 1 .  (8) 
The eigenvalues  of S2 are s(s + 1) where the principal quantum number n = 2s.  The 

2s + I eigenvalues of Si are -s, --s + 1, . . . , s. Because of the classical origin of SI, Sz, 
S3. the quantum states 'localized' on the elliptic orbits that we seek will, in some sense, 
minimize the dispersion of the measurement of these observables. But the commutation 
relations given by the quantization of (5) leads to a kind of Heisenberg uncertainty relation, 
which can be visualized on the Bloch sphere: the classical ellipse is associated with a single 
point on the sphere but the quantum state can at best minimize a solid angle around this 
point. Moreover, the non-zero lower bound has to be intrinsically defined, that is to say, 
invariant under the rotations (just as the Heisenberg relation A x .  A p  2 1 is covariant under 
the Galileian transformations). 

I(&)]/Z (or 
circular permutations), but this is not covariant because I (S,) I cannot define a uniform unit 
of area on the sphere. For example, this area will be null on the equator. The better c'hoice 
is in fact the following 1121: given a small area around some point P on the Bloch sphere 
(see figure 3). let I? be one of the rotations which maps P onto N ,  the north pole defined 
by S3. Then the rotated operators 33 = k ' S 3 I ?  satisfy the same commutation rules as the 
previous set and the uncertainty relations will be 

The quantity 4(3,)4(32) measures the area centred at P. Note that (9) is now obviously 
covariant under the symmetry group of the sphere. It is well known thiit the CS of the~Lie 
group SU(2)  will minimize the inequality (9). Results concerning their construction and 
their properties are essentially taken from [2, 131. 

Let us briefly recall the construction for a general Lie group G: given a Hilbert space 
which gives an irreducible representation of G, any. state /WO) in this space determines a 
subgroup H of G ,  the isotropic subgroup consisting of elements which leave [WO) invariant 
in the quantum sense, that is to say, up to a phase factor. The choice of this initial state is 
quite arbitrary, but it is interesting to take a certain extremal stare (related to the symmetry 
properties  of a physical system for example). Now the family of generalized cs is the 
set {a [YO), Q E G / H )  which has the same topology as the coset space G / H  (dependent 

In our case, from (S), it is clear that the eigenspaces of H give an irreducible 
representation of SU(2)  where we can diagonalize both H and one of the Si. We choose 
for the extremal state a totally circular and normalized one (see figure l(a)):  IWo) = Is, -s) 
defined by 

At first sight, the commutation relations lead to the condition AS1 AS2 

A(~%)4(32) 2 I&)lP. (9) 

on WO)). 

H I S ,  - s )  = (2s + 1) IS, -3) 

P i s ,  -s) = s(s + 1) Is. -s) 
s3 Is, -3) = -3 Is, -s) . 

The coset space is isomorphic to the sphere, which is of course the Bloch sphere. The 
displacement operators Q are rotations on the sphere in accord with the classical picture so 
that they will depend on two angles. 
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Thus each Cs, In; 8.9) = Q(8, q) Is, -s), will be associated with a point on the sphere 
and will be located within a probability distribution on the corresponding classical trajectory. 
In particular, Is, -s) corresponds to In = 2s; 8 = n, q). 

The dispersions of the measures of the rotated operators 31 and 32 are equal A($) = 
A($) = and we are in the optimal situation where A(.?l)A(&) = l&)1/2 = 
s/2. The localization on the Bloch sphere can also be seen by the invariant relation 
A(&)' + A(&)' + = s = 4 2 ,  that is to say the area surrounding P changes 
as n whereas the total area of the Bloch sphere behaves like nz. 

and S3 with 
eigenvalues s(s + 1) and m: 

We can expand the normalized CS using the eigenstates Is,m) of 

They form an over-complete basis in each eigenspace of H: 

I d  = - + 1 In; 8, p) sin0 dedp (n; 8,pl. 4n 

In this integral, 8 goes from 0 to A, i.e. from an anticlockwise circular orbit to a clockwise 
circular one. 

The scalar product between two different cs associated with two different points on the 
sphere is simply expressed in terms of the angle Q between the corresponding radial unit 
vectors: 

This scalar product allows us to visualize the localization of a cs on the Bloch sphere. 
In figure 3, we report from the Bloch sphere and in the (e, q) direction, the squared scalar 
product of the corresponding cs with a particular one In; 80, qd. From equation (13) the 
characteristic angle associated with a cs behaves like l / ,h  and the surface on the unit 
sphere behaves like l / n .  The sphere supports n states, n being the dimension of the energy 
sub-space. 

5. Elliptic creation operator 

We will now show the identity between the elliptic states previously introduced and 
the coherent states by introducing elliptic creation operators. We can use the basis 
I .)+I .)- of clockwise and anticlockwise circular polarization normalized states [lo] with 
the corresponding creation operators a$ and a? in order to give a new expression for the 
coherent states: 

Using equation (13) we rewrite the cs as 

where C& can be interpreted as a creation operator of one quantum, with a fractional 
distribution in each circular polarization and a phase shift between them. If 8 = 0 or 
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B = K, In; 0,O) = Is, 3s) then from (10) we obtain a totally circular state in accordance 
with the classical analysis. For other values, we obtain a non-isotropic deformation of the 
circle, i.e. an ellipse with a shape controlled by 8, which is related to the eccentricity. The 
operator C20 is thus a kind of ‘elliptical’ creation operator. 

We can construct the same CS from an extremal state of SI instead of S3. Remarking 
that SI is proportional to the energy difference between the two linear modes along Ox and 
Oy (see equation (6)), the extremal state is then IQ;) = ( a : y / f i  IO) which is the state 
with n = 2s quanta in the mode Oy; the spherical angles (e’, 9’) are now related to the SI 
axis. For p = 0, we have q‘ = 7r/2 and 8’ = 1r/2 - 0 = 217. and in the same way, the 
rotation gives 

1 2r In: e, d = - (a: cos q + iu: sin q) 10) A 
the corresponding wavefunction reads 

Using the summation theorem for the Hermite polynomials [14] the sum can be re-cast as 

which allows us to identify the states introduced in section 2 to the CS. Rewriting C:o 
in terms of the linear creation operators a: and a: (see equation (14)), we can see this 
operator as an elliptical creation operator of n quanta with a fractional distribution in each 
of the longitudinal modes which are in quadrature. We recognize then expression (4). 

6. Relation with the standard CS 

The previous cs were -stationary by construction. Indeed the Heisenberg inequality 
AEAf  1 is minimized by A E  = 0 and At = CO, so %at these states are totally 
delocalized in time. But this inequality can also be minimized by a finite localization 
both in E and f: such states will not be stationary. For AE # 0, there is a family of 
Bloch spheres associated with the discrete values of E and each can ‘support’ states which 
minimize (9). Indeed, let us consider the superposition of elliptic cs with the same value 
of (e, p) but different energy. This superposition defines a mean classical ellipse on which 
the probability density will be localized; however, because A E  # 0, the ellipse will evolve 
with the time. Such a superposition is similar to the standard coherent state constructed 
on the Heisenberg group [13,2]. Here we briefly explain the relation with the standard 
time-dependent cs [lo]. They form a complete set so that we can express In; 0,O) as a 
superposition of these states. The standard cs localized at the point ( x .  y ,  p x ,  p?) of the 
phase space has the following expansion: 

I with U = ~ ( x  + ipx) = P cos1 exp(i&J and fi  = &(y + ip,.) = p sinh exp(i4fl). 
And the resolution of unity gives 
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and direct calculations give (@In; 8,O) = (n!)-'/2(or"cos 9 + i,Fsinq)n e x p ( - v ) .  
Using the expressions above for LY and j3, we rewrite this scalar product as 

In the classical limit ( E  = n + 1 + w), the foliation by the Bloch spheres is a quasi- 
continuum since their radii are proportional to n and two consecutive spheres are distant by 
unity. 

In this limit, the behaviour of (16) will select some of the LY and p in the superposition. 
Actually, the parentheses has a norm less or equal to 1 and it will be non-zero in the 
semiclassical regime only if it has exactly 'a unit norm: therefore we must have h = 7 
and q5m = q 5 ~  - f, this gives the eccentricity expected and the quadrature phase between 
the motion on the two modes. Moreover, in this limit, p" exp(-p2/2) is strongly peaked 
around ,h which is exactly what we want for the energy. Note that the well known fact 
that the wavepacket for the standard cs does not spread is explained by the isochronism of 
the oscillations (i.e. equidistant energy levels). This is not true for the Coulomb potential 
where spreading of wavepackets occurs with revivals [15, 71. 

7. Discussion and conclusion 

In classical mechanics, a state of the isotropic two-dimensional harmonic oscillator is usually 
described by a point moving on an iso-energy surface in a four-dimensional phase space. It 
is equivalent to choosing the usual position-impulsion coordinates or the (5'1, S2. S3) which 
define an ellipse and a fourth coordinate (angle or time) which gives the position of the 
particle on the ellipse. Instead of SI, S, and S3, one can also use the spherical coordinates 
8 and 'p on the Bloch sphere whose radius is half the energy. 

Within first-order perturbation theory, the energy remains constant and the point 
describing the state of the system in these coordinates will drift slowly on the sphere with 
a characteristic time that is lower than the period of the non-perturbative periodic motion. 

In the quantum description, the stationary coherent~states of energy n + 1 that we 
constructed in spherical coordinates are more natural than the standard ones: they correspond 
to a maximum in the localization of the distribution of measurements of the SI, Sz and S, 
operators on the sphere. They delimit on it a circular area of size n so that we need only n to 
cover the whole sphere. These states depend continuously on two parameters which define 
a point on the sphere. They provide a complete quasi-orthogonal basis. The corresponding 
wavefunctions are very simple because they use only one Hermite polynomial. Unlike the 
standard stationary states, their density probability has very little structure and is localized 
on the classical ellipse. They provide a natural link between the classical and quantum 
aspects of the harmonic oscillator. 

A weak perturbation will lift the degeneracy and we must then diagonalize the 
perturbation in the (n + I)-energy eigenspace. The elliptic states are particularly convenient 
for this. One can represent on the sphere the squared scalar product of the elliptic state 
with the coherent state corresponding to each point of the sphere. For a regular classical 
trajectory the product will be significant only for a small area surrounding the trajectory 
and the expansion of the stationary state requires only a few CS. These states will be taken 
as centred and regularly spaced on  the^ closed curve of this trajectory. The characteristic 
distance between the cs being fi, we need only f i  of the n~complete basis to describe the 
perturbed state. We can also obtain from the periodic classical trajectory the semiclassical 
energy by the wKB quantization on the sphere. For classically chaotic motions, from the 
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KAM theorem, the chaotic region will he limited on the sphere and again, only a fraction of 
the complete basis of cs will be necessary. The CS will be well suited to visualizing~ the time 
dependence of the initial state. For small times, one can expand the true time-dependant 
state on a few cs which evolve according to the Hamiltonian flow. 
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